hydrogen bonded to nine adjacent molecules. Along the base vector [100] an infinite one-dimensional chain is formed. Fig. 2 shows the unit cell with two sets of D- and l-enantiomers. Part of the pattern of hydrogen bonds can be discerned in this figure.
In violation of the 'Wallach rule' the density D_{x} of the racemate is considerably smaller than that of the pure enantiomer $\left(1.510 \mathrm{~g} \mathrm{~cm}^{-3}\right)$. This could be an artefact of the different temperatures of the measurements or of the overall inferior crystal quality of the investigated D -iditol. The final R value is 0.09 for only 697 reflexions (Azarnia, Jeffrey \& Shen, 1972). However, similar deviations from the rule have been observed in the past, indicating some problems of the general applicability of the 'rule' (Jacques, Collet \& Wilen, 1981, pp. 28-31).

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

Azarnia, N., Jeffrey, G. A. \& Shen, M. S. (1972). Acta Cryst. B28, 1007-1013.
Hawkes, G. E. \& Lewis, D. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 2073-2078.
Jacques, J., Collet, A. \& Wilen, S. H. (1981). Enantiomers, Racemates and Resolutions. New York: John Wiley.
Kanters, J. A., Roelofsen, G. \& Smits, D. (1977). Acta Cryst. B33, 3635-3640.
Keller, E. (1986). Chem. Unserer Zeit, 20, 178-181.
Kopf, J., Bischoff, M. \& Köll, P. (1991). Carbohydr. Res. 217, 1-6.
Kopf, J., Brandenburg, H., Seelhorst, W. \& Köll, P. (1990). Carbohydr. Res. 200, 339-354.
Kuleshova, L. N. \& Zorky, P. M. (1980). Acta Cryst. B36, 2113-2115.
Paulsen, H. (1972). Methods Carbohydr. Chem. 6, 142-149.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
SPEK, A. L. (1982). PLATON88. Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.
Wolfrom, M. L. \& Thompson, A. (1963). Methods Carbohydr. Chem. 2, 65-68.

Structure of 3-(4-Chloropheny)-4-[2-(3,4-dimethoxyphenyl)ethyl]-4,5-dihydro-5-(2-methoxyphenyl)-1-phenyl-1,2,4-triazole

By Kung-Kai Cheung* and Roy M. Letcher*
Department of Chemistry, University of Hong Kong, Bonham Road, Hong Kong

(Received 4 March 1991; accepted 16 August 1991)

Abstract

C}_{31} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{3}, M_{r}=528.06\), monoclinic, $P 2_{1} / c, \quad a=10.793$ (3),$\quad b=19.317$ (3),$\quad c=$ 14.038 (5) $\AA, \beta=110.99$ (3) ${ }^{\circ}, V=2733$ (3) $\AA^{3}, Z=$ $4, D_{x}=1.283 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71073 \AA, \mu=$ $1.729 \mathrm{~cm}^{-1}, F(000)=1112, T=295 \mathrm{~K}, R=0.043$ for 2403 independent observed reflections. The structure features a tetrasubstituted 1,2,4-triazole derivative.

Introduction. The nitrilimine (2) formed from $\alpha, 4$-dichlorobenzaldehyde phenylhydrazone (1) and triethylamine, reacts as a 1,3-dipole and adds to the imine (3) formed from 2 -methoxybenzaldehyde and 2-(3,4-dimethoxyphenyl)ethylamine, to give a new crystalline triazole A. As the cycloaddition may occur in two ways, A is either a $1,2,4$ - or a $1,2,3-$ triazole. In the first reported example of this type of reaction (Huisgen, Grashey, Knupfer, Kunz \& Seidel, 1964), a 1,2,4-triazole structure was reported for the adduct obtained from diphenylnitrilimine and benzalaniline, as the adduct was found to be identi-

[^0]cal with the product from (α-anilinobenzal)phenylhydrazine and benzaldehyde (Busch \& Ruppenthal, 1910), which was considered to be a $1,2,4$-triazole. Since it is conceivable that the reactive (α anilinobenzal)phenylhydrazine could rearrange via a triazetidine and form a $1,2,3$-triazole, a more convincing proof seems necessary for triazoles formed from imine-nitrilimine cycloadditions. Furthermore, other imines and nitrilimines could cyclize in different ways. The $1,2,4$-triazole structure (4) has now been confirmed for A in this X-ray crystallographic study. To the best of our knowledge no crystallographic structural investigations have been carried out on substituted 4,5-dihydro-1,2,4-triazoles.

(1)
(2)

(3)

(4)
(c) 1992 International Union of Crystallography

Experimental. The title compound (4) was obtained in 75% yield from the reaction between (2) and (3) in the presence of triethylamine, and was crystallized from 95% ethanol.

A yellow crystal of dimensions $0.2 \times 0.15 \times$ 0.3 mm was selected for data collection using an Enraf-Nonius CAD-4 diffractometer with graphitemonochromated Mo $K \alpha$ radiation, and scintillation counter. Cell dimensions by least squares from the setting angles of 25 reflections ($11<2 \theta<15^{\circ}$) measured on the diffractometer. The intensities of 7347 reflections ($2 \theta_{\text {max }}=48^{\circ}$), in the range $0 \leq h \leq 12$, $-22 \leq k \leq 22,-16 \leq l \leq 16$ were measured, using the $\omega-2 \theta$ scan, ω scan angle $(0.65+0.344 \tan \theta)^{\circ}$ at 0.82 to $5.49^{\circ} \mathrm{min}^{-1}$, extended 25% on each side for background measurement. Three standard reflections measured every 2 h showed no decay. Systematic absences indicated $P 2_{1} / c$ and this was confirmed in the structure solution. The intensity data were corrected for Lp effects and empirical absorption (minimum correction factor 0.9843 , maximum correction factor 0.9986). After equivalent reflections were averaged, the 7347 measured reflections gave 3632 independent reflections, of which 2408 with $I>$ $3 \sigma(I)$, where $\sigma^{2}(I)=S+4\left(B_{1}+B_{2}\right), S=$ scan, B_{1} and $B_{2}=$ background counts, were considered observed. $R_{\text {int }}=0.016$ for observed reflections and 0.021 for all reflections. The structure was determined by direct methods (MULTAN11/82; Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982) and refined by full-matrix least squares (on F) with atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV), using the SDP programs (Enraf-Nonius, 1985) on a MicroVAXII computer. The $\mathrm{C}, \mathrm{Cl}, \mathrm{N}$ and O atoms were refined anisotropically; H atoms

Fig. 1. ORTEPII (Johnson, 1976) drawing of the molecule (4) with numbering of atoms.

Table 1. Atomic coordinates and equivalent isotropic thermal parameters (\AA^{2}) with e.s.d.'s in parentheses

	x	y	z	$B_{\text {eq }}$
Cl	0.4430 (1)	0.18564 (6)	0.84840 (7)	7.74 (3)
Ol	0.7008 (2)	-0.0167 (1)	1.3999 (2)	5.16 (5)
O2	0.7880 (2)	0.0935 (1)	1.3417 (2)	5.44 (5)
O3	0.0506 (2)	-0.0647 (1)	1.3085 (1)	5.11 (5)
N1	0.2082 (2)	-0.0255 (1)	1.1263 (2)	3.52 (5)
N2	0.1323 (2)	-0.1313 (1)	1.0599 (2)	4.25 (6)
N3	0.1877 (2)	-0.0979 (1)	0.9946 (2)	4.25 (6)
Cl	0.6635 (4)	-0.0708 (2)	1.4514 (3)	6.5 (1)
C2	0.8406 (4)	0.1530 (2)	1.3085 (4)	9.0 (1)
C3	0.0095 (3)	-0.0468 (2)	1.3914 (2)	6.13 (9)
C4	0.2371 (3)	0.0663 (2)	1.2592 (2)	4.39 (7)
C5	0.1672 (3)	0.0434 (2)	1.1477 (2)	4.15 (7)
C6	0.1334 (3)	-0.0850 (2)	1.1430 (2)	3.88 (7)
C7	0.2273 (3)	-0.0385 (1)	1.0345 (2)	3.73 (7)
C8	0.2006 (3)	-0.1192 (1)	1.2465 (2)	3.70 (7)
C9	0.3081 (3)	-0.1618 (2)	1.2624 (2)	4.63 (8)
C10	0.3746 (3)	-0.1918 (2)	1.3567 (3)	5.69 (9)
Cl 1	0.3321 (4)	-0.1789 (2)	1.4357 (3)	5.93 (9)
Cl 2	0.2247 (3)	-0.1374 (2)	1.4219 (2)	5.23 (8)
Cl 3	0.1583 (3)	-0.1070 (2)	1.3283 (2)	4.02 (7)
C14	0.0281 (3)	-0.1773 (1)	1.0140 (2)	4.05 (7)
C15	-0.0600 (3)	-0.1939 (2)	1.0617 (3)	5.15 (8)
Cl6	-0.1651 (4)	-0.2397 (2)	1.0129 (3)	6.4 (1)
C 17	-0.1805 (4)	-0.2678 (2)	0.9199 (3)	6.9 (1)
C18	-0.0903 (4)	-0.2522 (2)	0.8763 (3)	6.4 (1)
C19	0.0133 (3)	-0.2074 (2)	0.9207 (2)	5.21 (8)
C20	0.2902 (3)	0.0119 (2)	0.9886 (2)	3.71 (7)
C21	0.2388 (3)	0.0227 (2)	0.8841 (2)	4.55 (7)
C22	0.2882 (3)	0.0741 (2)	0.8394 (2)	5.31 (8)
C23	0.3902 (3)	0.1150 (2)	0.9008 (2)	4.66 (7)
C24	0.4482 (3)	0.1030 (2)	1.0039 (2)	4.67 (8)
C25	0.3982 (3)	0.0511 (2)	1.0471 (2)	4.29 (7)
C26	0.3836 (3)	0.0773 (2)	1.2870 (2)	3.86 (7)
C27	0.4324 (3)	0.1378 (2)	1.2626 (2)	4.66 (8)
C28	0.5674 (3)	0.1452 (2)	1.2795 (2)	4.95 (8)
C29	0.6538 (3)	0.0921 (2)	1.3227 (2)	4.14 (7)
C30	0.6068 (3)	0.0319 (2)	1.3516 (2)	3.80 (7)
C31	0.4733 (3)	0.0245 (2)	1.3331 (2)	3.97 (7)

in calculated positions were not refined. Convergence for 343 variables by least squares with $\quad w=4 F_{o}^{2} / \sigma^{2}\left(F_{o}^{2}\right)$, where $\sigma\left(F_{o}^{2}\right)=\left[\sigma^{2}(I)+\right.$ $\left.\left(0.055 F_{o}^{2}\right)^{2}\right]^{1 / 2}$ and reflections with $F_{o}^{2}<1.5 \sigma\left(F_{o}^{2}\right)$ given negative weights and omitted in the refinement, was reached at $R=0.043$ and $w R=0.060$ and $S=$ 1.620 for 2408 reflections. $(\Delta / \sigma)_{\max }=0.05$. A final difference Fourier map was featureless, with maximum positive and negative peaks of 0.29 and $-0.35 \mathrm{e}^{\AA^{-3}}$.

Discussion. An ORTEPII drawing (Johnson, 1976) of the molecule with atomic numbering scheme is shown in Fig. 1. The atomic parameters of the C, Cl, N and O atoms are listed in Table 1.* Bond lengths, bond angles and selected torsion angles are given in Table 2.

In the 1,2,4-triazole ring, the $\mathrm{C}-\mathrm{N}$ bonds involving C6 are comparable [$\mathrm{N} 1-\mathrm{C} 6=1.472$ (4) and $\mathrm{N} 2-\mathrm{C} 6=1.466$ (4) \AA] while those involving C7

[^1]Table 2. Bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$ and selected torsion angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{C}-\mathrm{C} 23$	1.740 (3)	$\mathrm{C} 10-\mathrm{Cl1}$	1.367 (6)
$\mathrm{Ol}-\mathrm{Cl}$	1.409 (5)	$\mathrm{C} 11-\mathrm{Cl} 2$	1.365 (6)
$\mathrm{O} 1-\mathrm{C} 30$	1.371 (3)	$\mathrm{C} 12-\mathrm{C} 13$	1.383 (4)
O2-C2	1.431 (5)	C14-C15	1.384 (5)
O2-C29	1.377 (4)	C14-C19	1.388 (5)
O3-C3	1.429 (4)	C15-C16	1.408 (4)
O3-C13	1.367 (4)	C16-C17	1.368 (5)
N1-C5	1.466 (4)	C17-C18	1.356 (6)
N1-C6	1.472 (4)	C18-C19	1.374 (5)
$\mathrm{N} 1-\mathrm{C} 7$	1.398 (4)	$\mathrm{C} 20-\mathrm{C} 21$	1.386 (4)
N2-N3	1.417 (4)	C20-C25	1.386 (4)
N2-C6	1.466 (4)	C21-C22	1.379 (5)
N2-C14	1.396 (3)	C22-C23	1.379 (5)
N3-C7	1.281 (4)	C23-C24	1.376 (4)
C4-C5	1.539 (4)	C24-C25	1.377 (5)
C4-C26	1.502 (5)	C26-C27	1.376 (4)
C6-C8	1.524 (3)	C26-C31	1.395 (4)
C7-C20	1.463 (4)	C27-C28	1.397 (5)
C8-C9	1.374 (4)	C28-C29	1.372 (5)
C8-C13	1.398 (4)	C29-C30	1.388 (4)
C9-C10	1.387 (4)	C30-C31	1.378 (4)
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{C} 30$	117.7 (3)	N2-C14-C19	120.3 (4)
C2-02-C29	117.7 (2)	C15-C14-C19	119.5 (3)
$\mathrm{C} 3-\mathrm{O}-\mathrm{Cl} 3$	118.0 (2)	C14-C15-C16	119.0 (3)
$\mathrm{C5}-\mathrm{N} 1-\mathrm{C6}$	116.9 (2)	C15-C16-C17	121.0 (4)
$\mathrm{C5}-\mathrm{N} 1-\mathrm{C7}$	120.5 (2)	C16-C17-C18	118.8 (3)
C6-N1-C7	106.1 (3)	C17-C18-C19	122.2 (4)
N3-N2-C6	110.6 (2)	C14-C19-C18	119.5 (4)
N3-N2-C14	116.6 (2)	C7-C20-C21	119.6 (2)
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{Cl} 4$	122.0 (3)	C7-C20-C25	121.8 (2)
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 7$	106.1 (2)	C21-C20-C25	118.5 (3)
$\mathrm{C5}-\mathrm{C} 4-\mathrm{C} 26$	113.1 (3)	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	121.1 (3)
$\mathrm{N} 1-\mathrm{C5}-\mathrm{C} 4$	113.3 (3)	C21-C22-C23	118.7 (3)
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{N} 2$	101.4 (2)	$\mathrm{C}-\mathrm{C} 23-\mathrm{C} 22$	119.7 (2)
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 8$	113.0 (2)	$\mathrm{Cl}-\mathrm{C} 23-\mathrm{C} 24$	118.9 (2)
$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 8$	111.2 (2)	C22-C23-C24	121.4 (4)
$\mathrm{N} 1-\mathrm{C7}-\mathrm{N} 3$	115.4 (3)	C23-C24--C25	119.0 (3)
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 20$	122.1 (2)	C20-C25-C24	121.1 (3)
N3-C7-C20	122.5 (3)	C4-C26-C27	121.1 (2)
$\mathrm{C} 6-\mathrm{C} 8-\mathrm{C} 9$	120.0 (3)	C4-C26-C31	120.6 (3)
C6-C8-C13	121.8 (3)	C27-C26-C31	118.2 (3)
$\mathrm{C}-\mathrm{C} 8-\mathrm{Cl} 3$	118.2 (2)	C26-C27-C28	120.9 (3)
C8-C9-Cl0	121.6 (3)	C27-C28-C29	120.1 (3)
$\mathrm{C}-\mathrm{ClO}_{-\mathrm{Cl1}}$	119.3 (3)	O2-C29-C28	124.9 (3)
$\mathrm{ClO}^{-\mathrm{Cl1}-\mathrm{Cl2}}$	120.4 (3)	$\mathrm{O} 2-\mathrm{C} 29-\mathrm{C} 30$	115.5 (2)
C11-C12-C13	120.7 (3)	C28-C29-C30	119.6 (3)
$\mathrm{O3-C13-C8}$	116.1 (2)	$\mathrm{O} 1-\mathrm{C} 30-\mathrm{C} 29$	115.9 (3)
$\bigcirc 3-\mathrm{Cl} 3-\mathrm{Cl} 2$	124.2 (3)	$\mathrm{O} 1-\mathrm{C} 30-\mathrm{C} 31$	124.1 (3)
$\mathrm{C} 8-\mathrm{Cl} 3-\mathrm{Cl2}$	119.9 (3)	C29-C30-C31	120.0 (3)
N2-C14-C15	120.3 (3)	C26-C31-C30	121.1 (3)
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{C} 30-\mathrm{C} 29$	165.5 (3)	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 20$	39.8 (4)
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{C} 30-\mathrm{C} 31$	-13.2 (4)	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 3$	-5.4 (3)

Table 2 (cont.)

$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 29-\mathrm{C} 28$	$-4.0(4)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 20$	$175.6(3)$
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 29-\mathrm{C} 30$	$176.7(3)$	$\mathrm{C} 6-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 7$	$3.5(3)$
$\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 13-\mathrm{C} 8$	$-175.6(3)$	$\mathrm{C} 14-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 7$	$148.8(3)$
$\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 13-\mathrm{C} 12$	$4.5(4)$	$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 6-\mathrm{N} 1$	$-6.4(3)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$88.6(3)$	$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 8$	$-126.7(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$140.1(3)$	$\mathrm{C} 14-\mathrm{N} 2-\mathrm{C} 6-\mathrm{N} 1$	$-149.4(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6-\mathrm{N} 2$	$144.3(2)$	$\mathrm{C} 14-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 8$	$90.3(3)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 8$	$-96.7(3)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 7-\mathrm{N} 1$	$1.3(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6-\mathrm{N} 2$	$6.7(3)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 20$	$-179.7(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 8$	$125.7(3)$	$\mathrm{C} 26-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$66.2(3)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 3$	$-141.2(3)$		

are different $[\mathrm{N} 1-\mathrm{C} 7=1.398$ (4) and $\mathrm{N} 3-\mathrm{C} 7=$ 1.281 (4) \AA], indicating the presence of a C7-N3 double bond. Although the triazole ring is planar within experimental error, the best least-squares plane is through the group $\mathrm{N} 1-\mathrm{C} 7=\mathrm{N} 3-\mathrm{N} 2$ with C6 deviating 0.107 (2) \AA from it. The values of 1.466 (4) \AA for $\mathrm{N} 1-\mathrm{C} 5$ and 1.396 (3) \AA for $\mathrm{N} 2-\mathrm{C} 14$ can be compared with values of 1.452 (2) and 1.417 (2) \AA for similar bonds in 5,5 -dimethyl-4-(2-methylallyl)-2-tolyl-1,2,4-triazolidine-3-thione (Schulze, Richter \& Faure, 1988).

All intermolecular contacts correspond to van der Waals interactions.

References

Busch, M. \& Ruppenthal, R. (1910). Chem. Ber. 43, 3001-3011.
Enraf-Nonius (1985). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Huisgen, R., Grashey, R., Knupfer, H., Kunz, R. \& Seidel, M. (1964). Chem. Ber. 97, 1085-1095.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Schulze, K., Richter, C. \& Faure, R. (1988). Acta Cryst. C44, 1994-1996.

Acta Cryst. (1992). C48, 344-347

Structure of (1R,2S)-(-)-2-(Benzylamino)-1-(tert-butyldimethylsiloxy)-1-phenylpropane Hydrochloride

By S. Gorter* and J. Brussee
Department of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands

(Received 12 March 1991; accepted 16 August 1991)

[^2]$=19.8068(7) \AA, \quad V=2370.4(3) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.07 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.710730 \AA, \quad \mu=$ $2.17 \mathrm{~cm}^{-1}, F(000)=848, T=293 \mathrm{~K}$, final $R=0.0372$ for 1105 significant reflections. The asymmetric unit

[^0]: * Authors to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates, bond lengths and angles involving H atoms, torsion angles, and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54623 (29 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom correspondence should be addressed.

